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Abstract

We present a measurement of the W boson mass in proton-antiproton col-

lisions at
p
s = 1:8 TeV based on a data sample of 82 pb�1 integrated lu-

minosity collected by the D� detector at the Fermilab Tevatron. We utilize

e� events in which the electron shower is close to the phi edge of one of the

32 modules in the D� central calorimeter. The electromagnetic calorimenter

response and resolution in this region di�ers from that in the rest of the mod-

ule and electrons in this region were not previously utilized. We determine

the calorimeter response and resolution in this region using Z ! ee events.

We extract the W boson mass by �tting to the transverse mass and to the

electron and neutrino transverse momentum distributions. The result is com-

bined with previous D� results to obtain an improved measurement of the

W boson mass: mW = 80:483� 0:084 GeV.

�Submitted to the International Europhysics Conference on High Energy Physics, July 12{18,

2001, Budapest, Hungary, and to the XXth International Symposium on Lepton and Photon In-

teractions at High Energies, July 23{28, 2001, Rome, Italy.
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I. INTRODUCTION

Measurements of the W boson mass are of fundamental interest since they help con-
strain the Standard Model and the Higgs boson mass [1]. Recent measurements of the W
boson mass have been made by D� [2] and CDF [3] at the Tevatron and by the LEP ex-
periments [4]. Previous measurements by D� have relied on W ! e� events in which the
electron was detected in the central calorimeter or the forward calorimeters. The central
calorimeter is divided azimuthally into 32 modules [5]. Electrons incident close to the az-
imuthal module boundaries were found to have a reduced response and degraded energy
resolution. These \edge" electrons were excluded from our W and Z boson data samples
in previous measurements. In this paper, we report a new measurement of the W boson
mass using these edge electrons. We rely on Z ! ee events in which at least one electron is
detected in the edge region to calibrate the response of the calorimeter. Z ! ee events in
which only one electron is incident at a central calorimeter module boundary are also used
to additionally constrain the elecromagnetic calorimeter enegry scale for non-edge electrons,
thereby improving our previous measurements based on non-edge electrons.

II. EVENT SELECTION AND DETECTOR CALIBRATION

Direct measurement of the W boson mass mW at D� is performed using W ! e�
events from p�p collisions at a center-of-mass energy of 1.8 TeV. A detailed description of
the method used to measure mW is given in Ref. [2]. Events are selected by requiring the
presence of an isolated electron with high transverse momentum (pT ) and large missing
transverse energy (E/T ). The W boson mass is extracted by �tting Monte Carlo templates
to the observed kinematic distributions. Maximum likelihood �ts are made to the transverse
massmT =

q
2peTp

�
T (1 � cos �e�), electron transverse momentum peT , and neutrino transverse

momentum p�T . Here, �e� is the azimuthal angle between the electron and neutrino. The
three W boson mass measurements are combined taking into account correlations to obtain
the �nal result. A Monte Carlo simulation is used to provide the expected lineshapes of
the distributions as a function of mW . The Monte Carlo contains all resolution e�ects and
backgrounds as determined from data.

The W boson sample for this measurement is selected requiring E/T > 25 GeV and
a high-quality isolated electron in the central calorimeter (CC) with peT > 25 GeV and
�� < 0:1� 2�=32 = 0:02 radians, where �� is the angle between the electron direction and
the closest CC module boundary. The electron direction is calculated from the center-of-
gravity of the track in the central drift chamber and the event vertex position. Electrons
satisfying these criteria are referred to as \eC electrons", while non-edge electrons which
have �� > 0:02 radians are called \C electrons". The number of candidate edge-electron
W events selected by applying the above criteria was 3 853. For comparison, our previous
central calorimeter measurement using the 1994-95 data set was based on 28 323 candidates.

We also select Z ! ee candidates requiring two isolated electrons with peT > 25 GeV
with dielectron invariant mass 60 GeV < mee < 120 GeV. Events are required to have one
electron in the edge region. The second electron may also be in the edge region (eC-eC events),
or it may be in the non-edege region (eC-C events), or in one of the end calorimeters (eC-E
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events). The numbers of Z candidates selected are 470 eC-C events, 47 eC-eCevents, and 154eC-E events. Backgrounds to the edge electron W and Z samples are determined using the
same methods used in our previous analyses.

The calorimeter response to edge electrons is illustrated in Fig. 1, which compares the
reconstructed dielectron invariant mass distributions of eC-C and C-C events. Above the Z
peak, the distributions are consistent with one another, but at low mee there is an excess
of events in the edge sample indicating that a fraction of the edge electrons have a lower
electromagnetic response in the calorimeter. The di�erence between the distributions is well

FIG. 1. (a) Dielectron mass distribution for the edge sample (points with error bars) and the

non-edge sample (solid line). (b) Di�erence between the two distributions in (a) �tted with a single

Gaussian function.

described by a single Gaussian function. This suggests that the electromagnetic calorimeter
response for edge-electrons can be described by the sum of two Gaussians, one with the
same mean and width as for non-edge electrons and the second with a reduced response
and degraded energy resolution. This is consistent with expectations, since the high voltage
electrodes are set back near the module edge, thus reducing the electric �eld in that region
and giving lower response. There is no evidence for increased energy deposit in the backing
hadron calorimeter module that would occur if particles were passing within a crack between
EM modules. We assume that a fraction fedge of the edge electrons has a reduced response
and degraded energy resolution, while the remaining edge electrons have the same response
and energy resolution as non-edge electrons. Thus, for the fraction fedge of edge electrons,
the calorimeter response is parameterized by

Emeas = �edgeE
true
e + Æ

The o�set Æ was found to be consistent with the o�set previously used in the parameterization

6



of non-edge electrons, while the scale �edge must be separately determined for the edge
electrons. The energy resolution is parameterized by:�

�E
E

�2
= (cedge)

2 +

 
sp
E

!2

+
�
n

E

�2
where the sampling term s and noise term n are the same as for non-edge electrons. The
parameters fedge, �edge, and cedge are determined by �tting the invariant mass distribution ofeC-C events to two Gaussians, assuming a Z boson mass equal to the measured LEP value.
This �t gives

fedge = 0:346 � 0:076

�edge = 0:912 � 0:018

cedge = 0:101+0:028
�0:018:

Figure 2 shows a �t to the dielectron invariant mass distribution using the sum of two
Gaussians, one with the edge parameters determined above and the other with the param-
eters for non-edge electrons previously determined from C-C events. The parameterization
gives a good description of the observed data.

FIG. 2. Dielectron mass distribution for eC-C events. The dashed histogram shows the maxi-

mum likelihood �t and the solid curve is the background contribution.

III. RESULTS

The results of the �ts to the transverse mass and electron and neutrino transverse mo-
mentum distributions are shown in Fig. 3. The results are:
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FIG. 3. Distributions of mT , peT , and p�T from the edge electron W data. The superimposed

dashed histograms show the maximum likelihood �ts and the solid curves show the estimated

backgrounds.
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mW = 80:596 � 0:234 (stat) GeV; �2 = 45=29 (mT �t)

mW = 80:733 � 0:263 (stat) GeV; �2 = 38=39 (peT �t)

mW = 80:511 � 0:311 (stat) GeV; �2 = 45=39 (p�T �t)

The errors are statistical only. The systematic errors are listed in Table I. Combining these
measurements taking into account systematic errors and their correlations gives the �nal
result for the edge electron W mass:

mW = 80:574 � 0:405 GeV

Source mT Fit peT Fit p�T Fit

W Statistics 234 263 311

Edge EM scale (�edge) 265 309 346

CC EM scale (�cc) 128 131 113

CC EM o�set (Æcc) 142 139 145

Calorimeter uniformity 10 10 10

Electron angle calibration 38 40 52

Backgrounds 10 20 20

CC EM resolution (ccc) 15 18 2

Edge EM resolution (cedge) 268 344 404

Fraction of events (fedge) 8 14 22

Recoil response 20 16 46

Recoil resolution 25 10 90

Electron removal 15 15 20

Selection bias 2 9 20

Parton luminosity 9 11 9

Radiative corrections 4 8 0

PDF 0 64 9

pT (W ) 10 50 25

W -boson width 10 10 10

TABLE I. W mass uncertainties (in MeV) in the edge electron measurements. The uncertain-

ties due to the edge electron parameters fedge, �edge, and cedge are explained in the text, while

details of the other sources of uncertainty are given in Ref. [2].

The eC-C Z ! ee data sample provides a means to additionally constrain the central
calorimeter scale �CC and resolution constant term cCC for non-edge electrons. Fitting to
the observed mee distribution yields �CC = 0:9552 � 0:0023. The eC-E events can also be
used to �t for �CC and �EC yielding �CC = 0:9559 � 0:0107 and �EC = 0:9539 � 0:0085.
These values are consistent with the results obtained in our earlier analyses of non-edge and
EC events and can be combined with them taking into account the correlations to improve
the energy scale uncertainty, and hence the uncertainty on the W boson mass measurement.
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IV. COMBINED W MASS RESULTS

To obtain the �nal result for theW boson mass, we combine the following measurements:

(i) The Run 1a W mass measurement from a �t to mT

(ii) The three Run 1b central calorimeter measurements from �ts to mT , peT , and p�T

(iii) The three Run 1b end calorimeter measurements from �ts to mT , peT , and p�T

(iv) The three edge electron measurements from �ts to mT , peT , and p�T

The measurements in (ii) and (iii) include the improvement due to the additional constraints
on the EM calorimeter energy scale from edge events as discussed above.

The �nal combined result is

mW = 80:483 � 0:084 GeV

This represents an improved error of 7 MeV over our previously published result (80:482 �
0:091 GeV [2]). A major part of the improved uncertainty is due to the use of the eC-C
events to constrain the EM calorimeter energy scale for non-edge electrons.

V. CONCLUSION

We have improved the uncertainty in the D� measurement of the W boson mass, using
W ! e� and Z ! ee events in which electrons are detected in the edge region at the
boundary between modules of the central calorimeter. The new result is mW = 80:483 �
0:084 GeV.
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